zuliqar ali asghari maqsood and akram aqili fabrication and physical properties of cds znte and znse thin films

Недавно искали

Диапазон цен



Michael Taschuk T. Glancing Angle Deposition of Thin Films. Engineering the Nanoscale

This book provides a highly practical treatment of Glancing Angle Deposition (GLAD), a thin film fabrication technology optimized to produce precise nanostructures from a wide range of materials. GLAD provides an elegant method for fabricating arrays of nanoscale helices, chevrons, columns, and other porous thin film architectures using physical vapour deposition processes such as sputtering or evaporation. The book gathers existing procedures, methodologies, and experimental designs into a single, cohesive volume which will be useful both as a ready reference for those in the field and as a definitive guide for those entering it. It covers: Development and description of GLAD techniques for nanostructuring thin films Properties and characterization of nanohelices, nanoposts, and other porous films Design and engineering of optical GLAD films including fabrication and testing, and chiral films Post-deposition processing and integration to optimize film behaviour and structure Deposition systems and requirements for GLAD fabrication A patent survey, extensive relevant literature, and a survey of GLAD’s wide range of material properties and diverse applications.

11997.76 рублей

Купить сейчас

Noboru Kimizuka Physics and Technology of Crystalline Oxide Semiconductor CAAC-IGZO. Fundamentals

Electronic devices based on oxide semiconductors are the focus of much attention, with crystalline materials generating huge commercial success. Indium–gallium–zinc oxide (IGZO) transistors have a higher mobility than amorphous silicon transistors, and an extremely low off-state current. C-axis aligned crystalline (CAAC) IGZO enables aggressive down-scaling, high reliability, and process simplification of transistors in displays and LSI devices. This original book introduces the CAAC-IGZO structure, and describes the physics and technology of this new class of oxide materials. It explains the crystallographic classification and characteristics of crystalline oxide semiconductors, their crystallographic characteristics and physical properties, and how this unique material has made a major contribution to the field of oxide semiconductor thin films. Two further books in this series describe applications of CAAC-IGZO in flat-panel displays and LSI devices. Key features: Introduces the unique and revolutionary, yet relatively unknown crystalline oxide semiconductor CAAC-IGZO Presents crystallographic overviews of IGZO and related compounds. Offers an in-depth understanding of CAAC-IGZO. Explains the fabrication method of CAAC-IGZO thin films. Presents the physical properties and latest data to support high-reliability crystalline IGZO based on hands-on experience. Describes the manufacturing process the CAAC-IGZO transistors and introduces the device application using CAAC-IGZO.

8348.99 рублей

Купить сейчас

Kathy Lu Processing of Nanoparticle Materials and Nanostructured Films

There have been extraordinary developments in nanomaterials in the past two decades. Nanomaterial processing is one of the key components for this success. This volume, titled Processing of Nanoparticle Materials and Nanostructured Films, is a collection of the papers presented at Controlled Processing of Nanoparticle-based Materials and Nanostructured Films symposium held during the Materials Science and Technology 2009 conference (MS&T’09), October 25-29, 2009 in Pittsburgh, PA. It summarizes the progress that has been achieved most recently in understanding and processing nanoparticle-based materials and nanostructured films. Nanoparticle-based materials and nanostructured films hold great promise to enable a broad range of new applications. This includes high energy conversion efficiency fuel cells, smart materials, high performance sensors, and structural materials under extreme environments. However, many barriers still exist in understanding and controlling the processing of nanoparticle-based materials and nanostructured films. In particular, agglomeration must be controlled in powder synthesis and processing to enable the fabrication of homogeneous green or composite microstructures, and microstructure evolution must be controlled to preserve the size and properties of the nanostructures in the finished materials. Also, novel nanostructure designs are highly needed at all stages of bulk and thin film nanomaterial formation process to enable unique performances, low cost, and green engineering. This volume focuses on three general topics, 1) Processing to preserve and improve nanoscale size, structure, and properties, 2) Novel design and understanding of new nanomaterials, such as new synthesis approaches, templating, and 3D assembly technologies, and 3) Applications of nanoparticle assemblies and composites and thin films.

9147.89 рублей

Купить сейчас

Wiley Properties and Behavior of Polymers, 2 Volume Set

The book provides comprehensive, up-to-date information on the physical properties of polymers including, viscoelasticity, flammability, miscibility, optical properties, surface properties and more. Containing carefully selected reprints from the Wiley's renowned Encyclopedia of Polymer Science and Technology, this reference features the same breadth and quality of coverage and clarity of presentation found in the original.

41764.44 рублей

Купить сейчас

Sahar Amiri Cyclodextrins. Properties and Industrial Applications

The comprehensive resource for understanding the structure, properties, and applications of cyclodextrins Cyclodextrins: Properties and Industrial Applications is a comprehensive resource that includes information on cyclodextrins (CDs) structure, their properties, formation of inclusion complex with various compounds as well as their applications. The authors Sahar Amiri and Sanam Amiri, noted experts in the field of cyclodextrins, cover both the basic and applied science in chemistry, biology, and physics of CDs and offers scientists and engineers an understand of cyclodextrins. Cyclodextrins are a family of cyclic oligosaccharides consisting of (α-1,4)-linked α-D-glucopyranose units. The formation of inclusion complex between CDs as host and guest molecules is based on non-covalent interaction such as hydrogen bonding or van der waals interactions and lead to the formation of supramolecular structures. These supramolecular structures can be used as macroinitiator for initiating various type of reactions. CDs are widely used in many industrial products such as pharmacy, food and flavours, chemistry, chromatography, catalysis, biotechnology, agriculture, cosmetics, hygiene, medicine, textiles, drug delivery, packing, separation processes, environment protection, fermentation, and catalysis. This important resource: Offers a basic understanding of cyclodextrins for researchers and engineers Includes information of the basic structure of cyclodextrins and their properties Reviews how cyclodextrins can be applied in a variety of fields including medicine, chemistry, textiles, packing, and many others Shows how encapsulate corrosion inhibitors became active in corrosive electrolytes to ensure delivery of the inhibitors to corrosion sites and long-term corrosion protection Cyclodextrins offers research scientists and engineers a wealth of information about CDs with particular focus on how cyclodextrins are applied in various ways including in drug delivery, the food industry, and many other areas.

11997.76 рублей

Купить сейчас

Hongbo Zeng Polymer Adhesion, Friction, and Lubrication

Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.

15858.99 рублей

Купить сейчас

Gianfranco Pacchioni Oxide Ultrathin Films. Science and Technology

A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices

15147.13 рублей

Купить сейчас

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

15147.13 рублей

Купить сейчас

Malcolm Halcrow A. Spin-Crossover Materials. Properties and Applications

The phenomenon of spin-crossover has a large impact on the physical properties of a solid material, including its colour, magnetic moment, and electrical resistance. Some materials also show a structural phase change during the transition. Several practical applications of spin-crossover materials have been demonstrated including display and memory devices, electrical and electroluminescent devices, and MRI contrast agents. Switchable liquid crystals, nanoparticles, and thin films of spin-crossover materials have also been achieved. Spin-Crossover Materials: Properties and Applications presents a comprehensivesurvey of recent developments in spin-crossover research, highlighting the multidisciplinary nature of this rapidly expanding field. Following an introductory chapter which describes the spin-crossover phenomenon and historical development of the field, the book goes on to cover a wide range of topics including Spin-crossover in mononuclear, polynuclear and polymeric complexes Structure: function relationships in molecular spin-crossover materials Charge-transfer-induced spin-transitions Reversible spin-pairing in crystalline organic radicals Spin-state switching in solution Spin-crossover compounds in multifunctional switchable materials and nanotechnology Physical and theoretical methods for studying spin-crossover materials Spin-Crossover Materials: Properties and Applications is a valuable resource for academic researchers working in the field of spin-crossover materials and topics related to crystal engineering, solid state chemistry and physics, and molecular materials. Postgraduate students will also find this book useful as a comprehensive introduction to the field.

15479.66 рублей

Купить сейчас

Laurence Belfiore A. Physical Properties of Macromolecules

Explains and analyzes polymer physical chemistry research methods and experimental data Taking a fresh approach to polymer physical chemistry, Physical Properties of Macromolecules integrates the two foundations of physical polymer science, theory and practice. It provides the tools to understand polymer science concepts and research methods, while also instructing how to analyze experimental data. Drawing on the author's own extensive research in physical properties of polymers as well as more traditional topics, this text offers detailed analysis of numerous problems in polymer science, including laboratory data and research results. Topics include: Solid-state dynamics of polymeric materials Glass transitions in amorphous polymers Semicrystalline polymers and melting transitions Viscoelastic behavior Relaxation processes Macromolecule-metal complexes Mechanical properties of linear and crosslinked polymers Filled with detailed graphs to help explain important quantitative trends, Physical Properties of Macromolecules teaches by example, ensuring comprehension of the subject as well as the methodology to implement theory, problem-solving techniques, and research results in practical situations. This resource serves as the ideal companion for government laboratories, industrial research scientists, engineers, and professionals in polymer science fields who are interested in fully grasping all aspects of physical polymer science.

11724.7 рублей

Купить сейчас

Peter Martin Introduction to Surface Engineering and Functionally Engineered Materials

This book provides a clear and understandable text for users and developers of advanced engineered materials, particularly in the area of thin films, and addresses fundamentals of modifying the optical, electrical, photo-electric, triboligical, and corrosion resistance of solid surfaces and adding functionality to solids by engineering their surface, structure, and electronic, magnetic and optical structure. Thin film applications are emphasized. Through the inclusion of multiple clear examples of the technologies, how to use them,and the synthesis processes involved, the reader will gain a deep understanding of the purpose, goals, and methodology of surface engineering and engineered materials. Virtually every advance in thin film, energy, medical, tribological materials technologies has resulted from surface engineering and engineered materials. Surface engineering involves structures and compositions not found naturally in solids and is used to modify the surface properties of solids and involves application of thin film coatings, surface functionalization and activation, and plasma treatment. Engineered materials are the future of thin film technology. Engineered structures such as superlattices, nanolaminates, nanotubes, nanocomposites, smart materials, photonic bandgap materials, metamaterials, molecularly doped polymers and structured materials all have the capacity to expand and increase the functionality of thin films and coatings used in a variety of applications and provide new applications. New advanced deposition processes and hybrid processes are being used and developed to deposit advanced thin film materials and structures not possible with conventional techniques a decade ago. Properties can now be engineered into thin films that achieve performance not possible a decade ago.

14943.24 рублей

Купить сейчас

Ronald Wrolstad E. Food Carbohydrate Chemistry

Not since «Sugar Chemistry» by Shallenberger and Birch (1975) has a text clearly presented and applied basic carbohydrate chemistry to the quality attributes and functional properties of foods. Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates. Structure and nomenclature of sugars and sugar derivatives are covered, focusing on those derivatives that exist naturally in foods or are used as food additives. Chemical reactions emphasize those that have an impact on food quality and occur under processing and storage conditions. Coverage includes: how chemical and physical properties of sugars and polysaccharides affect the functional properties of foods; taste properties and non-enzymic browning reactions; the nutritional roles of carbohydrates from a food chemist's perspective; basic principles, advantages, and limitations of selected carbohydrate analytical methods. An appendix includes descriptions of proven laboratory exercises and demonstrations. Applications are emphasized, and anecdotal examples and case studies are presented. Laboratory units, homework exercises, and lecture demonstrations are included in the appendix. In addition to a complete list of cited references, a listing of key references is included with brief annotations describing their important features. Students and professionals alike will benefit from this latest addition to the IFT Press book series. In Food Carbohydrate Chemistry, upper undergraduate and graduate students will find a clear explanation of how basic principles of carbohydrate chemistry can account for and predict functional properties such as sweetness, browning potential, and solubility properties. Professionals working in product development and technical sales will value Food Carbohydrate Chemistry as a needed resource to help them understand the functionality of carbohydrate ingredients. And persons in research and quality assurance will rely upon Food Carbohydrate Chemistry for understanding the principles of carbohydrate analytical methods and the physical and chemical properties of sugars and polysaccharides.

7794.1 рублей

Купить сейчас

Alexey Bezryadin Superconductivity in Nanowires. Fabrication and Quantum Transport

The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine. One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so is the investigation and understanding of these properties in the first place. A promising approach is to use carbon nanotubes as well as DNA structures as templates. Many fundamental theoretical questions are still unanswered, e.g. related to the role of quantum fluctuations. This work is tackling them and provides a detailed analysis of the transport properties of such ultrathin wires. It presents an account of theoretical models, charge transport experiments, and also conveys the latest experimental findings regarding fabrication, measurements, and theoretical analysis. In particular, it is the only available resource for the approach of using DNA and carbon nanotubes for nanowire fabrication. It is intended for graduate students and young researchers interested in nanoscale superconductivity. The readers are assumed to have knowledge of the basics of quantum mechanics and superconductivity.

2139.84 рублей

Купить сейчас

Tayyab Suratwala I. Materials Science and Technology of Optical Fabrication

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.

9579 рублей

Купить сейчас

Michel Soustelle Thermodynamics of Surfaces and Capillary Systems

This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments. This volume, the final of the Chemical Thermodynamics Set, offers an in-depth examination of chemical thermodynamics. The author uses systems of liquids, vapors, solids and mixtures of these in thermodynamic approaches to determine the influence of the temperature and pressure on the surface tension and its consequences on specific heat capacities and latent heats. Electro-capillary phenomena, the thermodynamics of cylindrical capillary and small volume-phases are also discussed, along with a thermodynamic study of the phenomenon of nucleation of a condensed phase and the properties of thin liquid films. The final chapters discuss the phenomena of physical adsorption and chemical adsorption of gases by solid surfaces. In an Appendix, applications of physical adsorption for the determination of the specific areas of solids and their porosity are given.

8247.97 рублей

Купить сейчас

Sergio Pizzini Physical Chemistry of Semiconductor Materials and Processes

The development of solid state devices began a little more than a century ago, with the discovery of the electrical conductivity of ionic solids. Today, solid state technologies form the background of the society in which we live. The aim of this book is threefold: to present the background physical chemistry on which the technology of semiconductor devices is based; secondly, to describe specific issues such as the role of defects on the properties of solids, and the crucial influence of surface properties; and ultimately, to look at the physics and chemistry of semiconductor growth processes, both at the bulk and thin-film level, together with some issues relating to the properties of nano-devices. Divided into five chapters, it covers: Thermodynamics of solids, including phases and their properties and structural order Point defects in semiconductors Extended defects in semiconductors and their interactions with point defects and impurities Growth of semiconductor materials Physical chemistry of semiconductor materials processing With applications across all solid state technologies,the book is useful for advanced students and researchers in materials science, physics, chemistry, electrical and electronic engineering. It is also useful for those in the semiconductor industry.

6146.5 рублей

Купить сейчас

Frank Owens J. Physics of Magnetic Nanostructures

A comprehensive coverage of the physical properties and real-world applications of magnetic nanostructures This book discusses how the important properties of materials such as the cohesive energy, and the electronic and vibrational structures are affected when materials have at least one length in the nanometer range. The author uses relatively simple models of the solid state to explain why these changes in the size and dimension in the nanometer regime occur. The text also reviews the physics of magnetism and experimental methods of measuring magnetic properties necessary to understanding how nanosizing affects magnetism. Various kinds of magnetic structures are presented by the author in order to explain how nanosizing influences their magnetic properties. The book also presents potential and actual applications of nanomaterials in the fields of medicine and computer data storage. Physics of Magnetic Nanostructures: Covers the magnetism in carbon and born nitride nanostructures, bulk nanostructured magnetic materials, nanostructured magnetic semiconductors, and the fabrication of magnetic nanostructures Discusses emerging applications of nanomaterials such as targeted delivery of drugs, enhancement of images in MRI, ferrofluids, and magnetic computer data storage Includes end-of-chapter exercises and five appendices Physics of Magnetic Nanostructures is written for senior undergraduate and graduate students in physics and nanotechnology, material scientists, chemists, and physicists.

8247.97 рублей

Купить сейчас

Alexander Kokhanovsky Atmospheric Aerosols. Life Cycles and Effects on Air Quality and Climate

The book describes the morphological, physical and chemical properties of aerosols from various natural and anthropogenic sources to help the reader better understand the direct role of aerosol particles in scattering and absorbing short- and long-wave radiation.

25119.53 рублей

Купить сейчас

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.

В любой день есть способ заказать zuliqar ali asghari maqsood and akram aqili fabrication and physical properties of cds znte and znse thin films в любом из гипермаркетов отобранных рекламодателей: litres.ru. Определитесь с вашим выбором — 1 интернет-магазинов, а усредненная цена продукта порядка 12570.14 рублей. Посмотрев отзывы про zuliqar ali asghari maqsood and akram aqili fabrication and physical properties of cds znte and znse thin films допустимо легко рекомендовать бренд как отличную и недорогую компанию.

© 2019 Mededu51 . Охраняется законом РФ о СМИ | Разработано студией Flexi