teklu urgessa and sebsibe hialemariam application of data mining techniques on antiretroviral treatment data

Недавно искали

Диапазон цен



Tsiptsis Konstantinos K. Data Mining Techniques in CRM. Inside Customer Segmentation

This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.

7757.42 рублей

Купить сейчас

Enrico Seib Data Mining - Methoden in der Simulation

Bachelorarbeit aus dem Jahr 2008 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,0, Universität Rostock (Institut für Informatik, Lehrstuhl für Modellierung und Simulation), 100 Quellen im Literaturverzeichnis, Sprache: Deutsch, Abstract: Principles and methods of data mining are a widespread area, i.e. retail dealer use data mining tools to analyze the behavior of customers, computer hardware supplier use data mining to optimize their inventory. There are multiple possibilities of using data mining techniques, even in technical and scientific areas of applications. In regard of manyfold fields of application, there are no less than the number of techniques and methods for Data Mining in existence. Another field to apply Data Mining technique is the domain of simulation. Simulation is the computer-based approach of executing and experimenting of and with models. One aim of this thesis is to analyze data mining tools to see how capable they are solving data mining duties with respect to data calculated by simulation. Different data mining tools are analyzed, commercial tools like SPSS and SPSS Clementine as well as established and freely available tools like WEKA and the R-Project. These tools are analyzed in matters of their data mining functionalities, options to access different data sources, and their complexity of different data mining algorithms. Beyond the analysis of data mining tools with respect to functionality and simulation, envi-ronments for modeling a...

4752 рублей

Купить сейчас

Mourad Elloumi Biological Knowledge Discovery Handbook. Preprocessing, Mining and Postprocessing of Biological Data

The first comprehensive overview of preprocessing, mining, and postprocessing of biological data Molecular biology is undergoing exponential growth in both the volume and complexity of biological data—and knowledge discovery offers the capacity to automate complex search and data analysis tasks. This book presents a vast overview of the most recent developments on techniques and approaches in the field of biological knowledge discovery and data mining (KDD)—providing in-depth fundamental and technical field information on the most important topics encountered. Written by top experts, Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data covers the three main phases of knowledge discovery (data preprocessing, data processing—also known as data mining—and data postprocessing) and analyzes both verification systems and discovery systems. BIOLOGICAL DATA PREPROCESSING Part A: Biological Data Management Part B: Biological Data Modeling Part C: Biological Feature Extraction Part D Biological Feature Selection BIOLOGICAL DATA MINING Part E: Regression Analysis of Biological Data Part F Biological Data Clustering Part G: Biological Data Classification Part H: Association Rules Learning from Biological Data Part I: Text Mining and Application to Biological Data Part J: High-Performance Computing for Biological Data Mining Combining sound theory with practical applications in molecular biology, Biological Knowledge Discovery Handbook is ideal for courses in bioinformatics and biological KDD as well as for practitioners and professional researchers in computer science, life science, and mathematics.

14366.28 рублей

Купить сейчас

Hitesh Chhinkaniwala and Sanjay Garg Privacy Preserving Data Mining - Issues & Techniques

Huge volume of data from domain specific applications such as medical, financial, telephone, shopping records and individuals are regularly generated. Sharing of these data is proved to be beneficial for data mining application. Since data mining often involves data that contains personally identifiable information and therefore releasing such data may result in privacy breaches. On one hand such data is an important asset to business decision making by analyzing it. On the other hand data privacy concerns may prevent data owners from sharing information for data analysis. In order to share data while preserving privacy, data owner must come up with a solution which achieves the dual goal of privacy preservation as well as accuracy of data mining task mainly clustering and classification. Existing techniques for privacy preserving data mining is designed for traditional static data sets and are not suitable for data streams. Privacy preserving data stream mining is an emerging research area in the field of privacy aware data mining.

4755 рублей

Купить сейчас

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management

Packed with more than forty percent new and updated material, this edition shows business managers, marketing analysts, and data mining specialists how to harness fundamental data mining methods and techniques to solve common types of business problems Each chapter covers a new data mining technique, and then shows readers how to apply the technique for improved marketing, sales, and customer support The authors build on their reputation for concise, clear, and practical explanations of complex concepts, making this book the perfect introduction to data mining More advanced chapters cover such topics as how to prepare data for analysis and how to create the necessary infrastructure for data mining Covers core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, clustering, and survival analysis

3959.89 рублей

Купить сейчас

Gordon Linoff S. Data Mining Techniques. For Marketing, Sales, and Customer Relationship Management

The leading introductory book on data mining, fully updated and revised! When Berry and Linoff wrote the first edition of Data Mining Techniques in the late 1990s, data mining was just starting to move out of the lab and into the office and has since grown to become an indispensable tool of modern business. This new edition—more than 50% new and revised— is a significant update from the previous one, and shows you how to harness the newest data mining methods and techniques to solve common business problems. The duo of unparalleled authors share invaluable advice for improving response rates to direct marketing campaigns, identifying new customer segments, and estimating credit risk. In addition, they cover more advanced topics such as preparing data for analysis and creating the necessary infrastructure for data mining at your company. Features significant updates since the previous edition and updates you on best practices for using data mining methods and techniques for solving common business problems Covers a new data mining technique in every chapter along with clear, concise explanations on how to apply each technique immediately Touches on core data mining techniques, including decision trees, neural networks, collaborative filtering, association rules, link analysis, survival analysis, and more Provides best practices for performing data mining using simple tools such as Excel Data Mining Techniques, Third Edition covers a new data mining technique with each successive chapter and then demonstrates how you can apply that technique for improved marketing, sales, and customer support to get immediate results.

3302.64 рублей

Купить сейчас

Ekins Sean Pharmaceutical Data Mining. Approaches and Applications for Drug Discovery

Leading experts illustrate how sophisticated computational data mining techniques can impact contemporary drug discovery and development In the era of post-genomic drug development, extracting and applying knowledge from chemical, biological, and clinical data is one of the greatest challenges facing the pharmaceutical industry. Pharmaceutical Data Mining brings together contributions from leading academic and industrial scientists, who address both the implementation of new data mining technologies and application issues in the industry. This accessible, comprehensive collection discusses important theoretical and practical aspects of pharmaceutical data mining, focusing on diverse approaches for drug discovery—including chemogenomics, toxicogenomics, and individual drug response prediction. The five main sections of this volume cover: A general overview of the discipline, from its foundations to contemporary industrial applications Chemoinformatics-based applications Bioinformatics-based applications Data mining methods in clinical development Data mining algorithms, technologies, and software tools, with emphasis on advanced algorithms and software that are currently used in the industry or represent promising approaches In one concentrated reference, Pharmaceutical Data Mining reveals the role and possibilities of these sophisticated techniques in contemporary drug discovery and development. It is ideal for graduate-level courses covering pharmaceutical science, computational chemistry, and bioinformatics. In addition, it provides insight to pharmaceutical scientists, principal investigators, principal scientists, research directors, and all scientists working in the field of drug discovery and development and associated industries.

12671.64 рублей

Купить сейчас

Daniel Larose T. Discovering Knowledge in Data. An Introduction to Data Mining

The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization Offers extensive coverage of the R statistical programming language Contains 280 end-of-chapter exercises Includes a companion website for university instructors who adopt the book

7361.43 рублей

Купить сейчас

Albalate Amparo Semi-Supervised and Unsupervised Machine Learning. Novel Strategies

This book provides a detailed and up-to-date overview on classification and data mining methods. The first part is focused on supervised classification algorithms and their applications, including recent research on the combination of classifiers. The second part deals with unsupervised data mining and knowledge discovery, with special attention to text mining. Discovering the underlying structure on a data set has been a key research topic associated to unsupervised techniques with multiple applications and challenges, from web-content mining to the inference of cancer subtypes in genomic microarray data. Among those, the book focuses on a new application for dialog systems which can be thereby made adaptable and portable to different domains. Clustering evaluation metrics and new approaches, such as the ensembles of clustering algorithms, are also described.

8949.34 рублей

Купить сейчас

Giudici Paolo Applied Data Mining for Business and Industry

The increasing availability of data in our current, information overloaded society has led to the need for valid tools for its modelling and analysis. Data mining and applied statistical methods are the appropriate tools to extract knowledge from such data. This book provides an accessible introduction to data mining methods in a consistent and application oriented statistical framework, using case studies drawn from real industry projects and highlighting the use of data mining methods in a variety of business applications. Introduces data mining methods and applications. Covers classical and Bayesian multivariate statistical methodology as well as machine learning and computational data mining methods. Includes many recent developments such as association and sequence rules, graphical Markov models, lifetime value modelling, credit risk, operational risk and web mining. Features detailed case studies based on applied projects within industry. Incorporates discussion of data mining software, with case studies analysed using R. Is accessible to anyone with a basic knowledge of statistics or data analysis. Includes an extensive bibliography and pointers to further reading within the text. Applied Data Mining for Business and Industry, 2nd edition is aimed at advanced undergraduate and graduate students of data mining, applied statistics, database management, computer science and economics. The case studies will provide guidance to professionals working in industry on projects involving large volumes of data, such as customer relationship management, web design, risk management, marketing, economics and finance.

14651.58 рублей

Купить сейчас

Galit Shmueli Data Mining for Business Analytics. Concepts, Techniques, and Applications with JMP Pro

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field. Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks, and book chapters, including Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective and co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner ®, Third Edition, both published by Wiley. Mia Stephens is Academic Ambassador at JMP®, a division of SAS Institute. Prior to joining SAS, she was an adjunct professor of statistics at the University of New Hampshire and a founding member of the North Haven Group LLC, a statistical training and consulting company. She is the co-author of three other books, including Visual Six Sigma: Making Data Analysis Lean, Second Edition, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. He is co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley.

10372.01 рублей

Купить сейчас

Antonios Chorianopoulos Effective CRM using Predictive Analytics

A step-by-step guide to data mining applications in CRM. Following a handbook approach, this book bridges the gap between analytics and their use in everyday marketing, providing guidance on solving real business problems using data mining techniques. The book is organized into three parts. Part one provides a methodological roadmap, covering both the business and the technical aspects. The data mining process is presented in detail along with specific guidelines for the development of optimized acquisition, cross/ deep/ up selling and retention campaigns, as well as effective customer segmentation schemes. In part two, some of the most useful data mining algorithms are explained in a simple and comprehensive way for business users with no technical expertise. Part three is packed with real world case studies which employ the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Case studies from industries including banking, retail and telecommunications are presented in detail so as to serve as templates for developing similar applications. Key Features: Includes numerous real-world case studies which are presented step by step, demystifying the usage of data mining models and clarifying all the methodological issues. Topics are presented with the use of three leading data mining tools: IBM SPSS Modeler, RapidMiner and Data Mining for Excel. Accompanied by a website featuring material from each case study, including datasets and relevant code. Combining data mining and business knowledge, this practical book provides all the necessary information for designing, setting up, executing and deploying data mining techniques in CRM. Effective CRM using Predictive Analytics will benefit data mining practitioners and consultants, data analysts, statisticians, and CRM officers. The book will also be useful to academics and students interested in applied data mining.

4198.37 рублей

Купить сейчас

Bendat Julius S. Random Data. Analysis and Measurement Procedures

A timely update of the classic book on the theory and application of random data analysis First published in 1971, Random Data served as an authoritative book on the analysis of experimental physical data for engineering and scientific applications. This Fourth Edition features coverage of new developments in random data management and analysis procedures that are applicable to a broad range of applied fields, from the aerospace and automotive industries to oceanographic and biomedical research. This new edition continues to maintain a balance of classic theory and novel techniques. The authors expand on the treatment of random data analysis theory, including derivations of key relationships in probability and random process theory. The book remains unique in its practical treatment of nonstationary data analysis and nonlinear system analysis, presenting the latest techniques on modern data acquisition, storage, conversion, and qualification of random data prior to its digital analysis. The Fourth Edition also includes: A new chapter on frequency domain techniques to model and identify nonlinear systems from measured input/output random data New material on the analysis of multiple-input/single-output linear models The latest recommended methods for data acquisition and processing of random data Important mathematical formulas to design experiments and evaluate results of random data analysis and measurement procedures Answers to the problem in each chapter Comprehensive and self-contained, Random Data, Fourth Edition is an indispensible book for courses on random data analysis theory and applications at the upper-undergraduate and graduate level. It is also an insightful reference for engineers and scientists who use statistical methods to investigate and solve problems with dynamic data.

14651.58 рублей

Купить сейчас

Pawel Cichosz Data Mining Algorithms. Explained Using R

Data Mining Algorithms is a practical, technically-oriented guide to data mining algorithms that covers the most important algorithms for building classification, regression, and clustering models, as well as techniques used for attribute selection and transformation, model quality evaluation, and creating model ensembles. The author presents many of the important topics and methodologies widely used in data mining, whilst demonstrating the internal operation and usage of data mining algorithms using examples in R.

6145.94 рублей

Купить сейчас

Yan Zhao Interactive Data Mining

Yan Zhao's book, entitled "Interactive Data Mining" provides a con­ceptual framework and a systematic study of human-computer inter­actions and collaborations for effective data mining. The thesis is based on an assumption that the effectiveness of data mining systems depends crucially on semantics information about data and different user requirements. In contrast to many data mining models that con­centrate on automation and efficiency, interactive data mining sys­tems focus on adaptive and effective communication between human users and computer systems. Interactive systems fully explore the power of human intuition, creativity, heuristics and strategies with supports from computers. The thesis is well-balanced between theo­retical investigation and experimental evaluations. A user-oriented three-layered conceptual model is proposed. Within the framework, user perceptions and requirements are studied formally at the philo­sophical, technique and the application layers. The separation of the three layers leads to many new insights into data mining. Based on the conceptual framework, a prototype of Interactive Classification System (ICS) has been implemented.

9602 рублей

Купить сейчас

Getaneh Gebrehana and Sebsibe Hailemariam Application of Data Mining to Predict the Status of PreART Patient

In Ethiopia, there are many people who live with HIV and started ART. There is also large amount of data on HIV patients and ART medications. The objective of this research is to predict Pre-ART patient status by applying DM techniques using CD4 count that helps the organization to better patient management, decision making, planning and better manage the disease. Business understanding and data preparation is conducted to know what the business indeed and what type of data the business process use. Besides data preprocessing is applied to prepare good quality datasets for experimentation. Guiding the overall knowledge discovery process CRISP-DM methodology was employed. Experimentation with neural network and J48 algorithm were implemented to build classifier model. J48 model is built with 10-fold cross validation testing technique with minNumObj=25 and ConfidenceFactors=0.25 and results the highest scores of 75.832%. Due to the quality of the data the maximum result of 75.832% is achieved. The researcher believed that the center has to strongly work on data recording, organization and management.

4358 рублей

Купить сейчас

Samira ElAtia Data Mining and Learning Analytics. Applications in Educational Research

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

9987.88 рублей

Купить сейчас

Hina Kanth, Aiman Mushtaq, Rafi Ahmad Khan Data Mining for Marketing

Research Paper (postgraduate) from the year 2015 in the subject Business economics - Marketing, Corporate Communication, CRM, Market Research, Social Media, The University of Kashmir, language: English, abstract: This paper gives a brief insight about data mining, its process and the various techniques used for it in the field of marketing. Data mining is the process of extracting hidden valuable information from the data in given data sets .In this paper cross industry standard procedure for data mining is explained along with the various techniques used for it. With growing volume of data every day, the need for data mining in marketing is also increasing day by day. It is a powerful technology to help companies focus on the most important information in their data warehouses. Data mining is actually the process of collecting data from different sources and then interpreting it and finally converting it into useful information which helps in increasing the revenue, curtailing costs thereby providing a competitive edge to the organisation.

2102 рублей

Купить сейчас
Тщательно ознакомились с перечнем товарных позиций, которые возможно приобрести по названию teklu urgessa and sebsibe hialemariam application of data mining techniques on antiretroviral treatment data у одного из 2 интернет-магазинов? Делайте выбор среди вот таких порталов litres.ru, ozon.ru по цене в среднем 7576.05 рублей! Такое привлекательное предложение гарантирует возможность купить teklu urgessa and sebsibe hialemariam application of data mining techniques on antiretroviral treatment data недорого, ценник от 2102 рублей.

Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® presents an applied and interactive approach to data mining. Featuring hands-on applications with JMP Pro®, a statistical package from the SAS Institute, the book uses engaging, real-world examples to build a theoretical and practical understanding of key data mining methods, especially predictive models for classification and prediction. Topics include data visualization, dimension reduction techniques, clustering, linear and logistic regression, classification and regression trees, discriminant analysis, naive Bayes, neural networks, uplift modeling, ensemble models, and time series forecasting. Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® also includes: Detailed summaries that supply an outline of key topics at the beginning of each chapter End-of-chapter examples and exercises that allow readers to expand their comprehension of the presented material Data-rich case studies to illustrate various applications of data mining techniques A companion website with over two dozen data sets, exercises and case study solutions, and slides for instructors Data Mining for Business Analytics: Concepts, Techniques, and Applications with JMP Pro® is an excellent textbook for advanced undergraduate and graduate-level courses on data mining, predictive analytics, and business analytics. The book is also a one-of-a-kind resource for data scientists, analysts, researchers, and practitioners working with analytics in the fields of management, finance, marketing, information technology, healthcare, education, and any other data-rich field. Galit Shmueli, PhD, is Distinguished Professor at National Tsing Hua University’s Institute of Service Science. She has designed and instructed data mining courses since 2004 at University of Maryland, Statistics.com, Indian School of Business, and National Tsing Hua University, Taiwan. Professor Shmueli is known for her research and teaching in business analytics, with a focus on statistical and data mining methods in information systems and healthcare. She has authored over 70 journal articles, books, textbooks, and book chapters, including Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley. Peter C. Bruce is President and Founder of the Institute for Statistics Education at www.statistics.com He has written multiple journal articles and is the developer of Resampling Stats software. He is the author of Introductory Statistics and Analytics: A Resampling Perspective and co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner ®, Third Edition, both published by Wiley. Mia Stephens is Academic Ambassador at JMP®, a division of SAS Institute. Prior to joining SAS, she was an adjunct professor of statistics at the University of New Hampshire and a founding member of the North Haven Group LLC, a statistical training and consulting company. She is the co-author of three other books, including Visual Six Sigma: Making Data Analysis Lean, Second Edition, also published by Wiley. Nitin R. Patel, PhD, is Chairman and cofounder of Cytel, Inc., based in Cambridge, Massachusetts. A Fellow of the American Statistical Association, Dr. Patel has also served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University. He is a Fellow of the Computer Society of India and was a professor at the Indian Institute of Management, Ahmedabad, for 15 years. He is co-author of Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner®, Third Edition, also published by Wiley.

© 2019 Mededu51 . Охраняется законом РФ о СМИ | Разработано студией Flexi