mohammad mansoob khan chemistry of dinucleating macrocyclic ligand and their complexes

Недавно искали

Диапазон цен



Ji Zhang Macrocyclic Polyamines. Synthesis and Applications

The first comprehensive book focusing on synthesis and applications of macrocyclic polyamines and their derivatives Macrocyclic polyamines are a class of widely used important compounds. This is the first book that systematically summarizes the synthesis and applications of macrocyclic polyamines and their analogues, including the properties and synthetic methods of macrocyclic polyamines, chemical nucleases based on macrocyclic polyamines, the derivatives of macrocyclic polyamines as nano-vector materials, macrocyclic polyamines derivatives for bio-imaging, chemical sensors based on macrocyclic polyamines, and other applications of macrocyclic polyamines. Macrocyclic Polyamines: Synthesis and Applications includes most of the studies involving macrocyclic polyamines and their derivatives, and may be used as a reference for the researchers in related fields. It offers in-depth coverage of cyclization modes; special procedures for tetraza macrocyclic compounds; diacids-diamines condensation; oxidative DNA cleaving by macrocyclic polyamines; lipids with cationic MPA headgroups; the derivatives of DOTA, DO3A, and PCTA; receptors for anions; sensors for bioactive molecules; macrocyclic polyamines for solvent extraction and membrane transport of amino acids and their derivatives, electrophoretic separation, and open-tubular CEC; and much more. The first book that systematically summarizes the chemistry of macrocyclic polyamines and their derivatives in terms of synthetic methods for their preparation, functionalization, and application in the main fields of chemical sensors, chemical nucleases, drug-delivery, bio-imaging and vector materials Provides a comprehensive reference for the researchers working on macrocyclic polyamines Offers train of thought in related research fields such as organic chemistry, coordination chemistry, analytical chemistry, supramolecular chemistry, biomaterials, etc. Macrocyclic Polyamines: Synthesis and Applications will not only provide a reference for the researchers working on macrocyclic polyamines, but also offer opportunities for researchers in related research fields to understand the benefits of these key compounds.

12372.67 рублей

Купить сейчас

David Milstein Ligand Design in Metal Chemistry. Reactivity and Catalysis

The design of ancillary ligands used to modify the structural and reactivity properties of metal complexes has evolved into a rapidly expanding sub-discipline in inorganic and organometallic chemistry. Ancillary ligand design has figured directly in the discovery of new bonding motifs and stoichiometric reactivity, as well as in the development of new catalytic protocols that have had widespread positive impact on chemical synthesis on benchtop and industrial scales. Ligand Design in Metal Chemistry presents a collection of cutting-edge contributions from leaders in the field of ligand design, encompassing a broad spectrum of ancillary ligand classes and reactivity applications. Topics covered include: Key concepts in ligand design Redox non-innocent ligands Ligands for selective alkene metathesis Ligands in cross-coupling Ligand design in polymerization Ligand design in modern lanthanide chemistry Cooperative metal-ligand reactivity P,N Ligands for enantioselective hydrogenation Spiro-cyclic ligands in asymmetric catalysis This book will be a valuable reference for academic researchers and industry practitioners working in the field of ligand design, as well as those who work in the many areas in which the impact of ancillary ligand design has proven significant, for example synthetic organic chemistry, catalysis, medicinal chemistry, polymer science and materials chemistry.

12746.87 рублей

Купить сейчас

Tim Storr Ligand Design in Medicinal Inorganic Chemistry

Increasing the potency of therapeutic compounds, while limiting side-effects, is a common goal in medicinal chemistry. Ligands that effectively bind metal ions and also include specific features to enhance targeting, reporting, and overall efficacy are driving innovation in areas of disease diagnosis and therapy. Ligand Design in Medicinal Inorganic Chemistry presents the state-of-the-art in ligand design for medicinal inorganic chemistry applications. Each individual chapter describes and explores the application of compounds that either target a disease site, or are activated by a disease-specific biological process. Ligand design is discussed in the following areas: Platinum, Ruthenium, and Gold-containing anticancer agents Emissive metal-based optical probes Metal-based antimalarial agents Metal overload disorders Modulation of metal-protein interactions in neurodegenerative diseases Photoactivatable metal complexes and their use in biology and medicine Radiodiagnostic agents and Magnetic Resonance Imaging (MRI) agents Carbohydrate-containing ligands and Schiff-base ligands in Medicinal Inorganic Chemistry Metalloprotein inhibitors Ligand Design in Medicinal Inorganic Chemistry provides graduate students, industrial chemists and academic researchers with a launching pad for new research in medicinal chemistry.

14622.12 рублей

Купить сейчас

Han Huynh Vinh The Organometallic Chemistry of N-heterocyclic Carbenes

The Organometallic Chemistry of N-heterocyclic Carbenes describes various aspects of N-heterocyclic Carbenes (NHCs) and their transition metal complexes at an entry level suitable for advanced undergraduate students and above. The book starts with a historical overview on the quest for carbenes and their complexes. Subsequently, unique properties, reactivities and nomenclature of the four classical NHCs derived from imidazoline, imidazole, benzimidazole and 1,2,4-triazole are elaborated. General and historically relevant synthetic aspects for NHCs, their precursors and complexes are then explained. The book continues with coverage on the preparation and characteristics of selected NHC complexes containing the most common metals in this area, i.e. Ni, Pd, Pt, Ag, Cu, Au, Ru, Rh and Ir. The book concludes with an overview and outlook on the development of various non-classical NHCs beyond the four classical types. Topics covered include: Stabilization, dimerization and decomposition of NHCs Stereoelectronic properties of NHCs and their evaluation Diversity of NHCs Isomers of NHC complexes and their identification NMR spectroscopic signatures of NHC complexes normal, abnormal and mesoionic NHCs The Organometallic Chemistry of N-heterocyclic Carbenes is an essential resource for all students and researchers interested in this increasingly important and popular field of research.

7123.25 рублей

Купить сейчас

Reed Izatt M. Macrocyclic and Supramolecular Chemistry. How Izatt-Christensen Award Winners Shaped the Field

This book commemorates the 25th anniversary of the International Izatt-Christensen Award in Macrocyclic and Supramolecular Chemistry. The award, one of the most prestigious of small awards in chemistry, recognizes excellence in the developing field of macrocyclic and supramolecular chemistry Macrocyclic and Supramolecular Chemistry: How Izatt-Christensen Award Winners Shaped the Field features chapters written by the award recipients who provide unique perspectives on the spectacular growth in these expanding and vibrant fields of chemistry over the past half century, and on the role of these awardees in shaping this growth. During this time there has been an upsurge of interest in the design, synthesis and characterization of increasingly more complex macrocyclic ligands and in the application of this knowledge to understanding molecular recognition processes in host-guest chemistry in ways that were scarcely envisioned decades earlier. In October 2016, Professor Jean-Pierre Sauvage and Sir J. Fraser Stoddart (author for chapter 22 «Contractile and Extensile Molecular Systems: Towards Molecular Muscles» by Jean -Pierre Sauvage, Vincent Duplan, and Frédéric Niess and 20 «Serendipity» by Paul R. McGonigal and J. Fraser Stoddart respectively) were awarded the Nobel Prize in Chemistry alongside fellow Wiley author Bernard Feringa, for the design and synthesis of molecular machines.

14622.12 рублей

Купить сейчас

Andrea Bellelli Reversible Ligand Binding. Theory and Experiment

Presents the physical background of ligand binding and instructs on how experiments should be designed and analyzed Reversible Ligand Binding: Theory and Experiment discusses the physical background of protein-ligand interactions—providing a comprehensive view of the various biochemical considerations that govern reversible, as well as irreversible, ligand binding. Special consideration is devoted to enzymology, a field usually treated separately from ligand binding, but actually governed by identical thermodynamic relationships. Attention is given to the design of the experiment, which aids in showing clear evidence of biochemical features that may otherwise escape notice. Classical experiments are reviewed in order to further highlight the importance of the design of the experiment. Overall, the book supplies students with the understanding that is necessary for interpreting ligand binding experiments, formulating plausible reaction schemes, and analyzing the data according to the chosen model(s). Topics covered include: theory of ligand binding to monomeric proteins; practical considerations and commonly encountered problems; oligomeric proteins with multiple binding sites; ligand binding kinetics; hemoglobin and its ligands; single-substrate enzymes and their inhibitors; two-substrate enzymes and their inhibitors; and rapid kinetic methods for studying enzyme reactions. Bridges theory of ligand binding and allostery with experiments Applies historical and physical insight to provide a clear understanding of ligand binding Written by a renowned author with long-standing research and teaching expertise in the area of ligand binding and allostery Based on FEBS Advanced Course lectures on the topic Reversible Ligand Binding: Theory and Experiment is an ideal text reference for students and scientists involved in biophysical chemistry, physical biochemistry, biophysics, molecular biology, protein engineering, drug design, pharmacology, physiology, biotechnology, and bioengineering.

7873.78 рублей

Купить сейчас

Lothar Lilge Ruthenium Complexes. Photochemical and Biomedical Applications

Edited by a team of highly respected researchers combining their expertise in chemistry, physics, and medicine, this book focuses on the use of ruthenium-containing complexes in artificial photosynthesis and medicine. Following a brief introduction to the basic coordination chemistry of ruthenium-containing complexes and their synthesis, as well as their photophysical and photochemical properties, the authors discuss in detail the major concepts of artificial photosynthesis and mechanisms of hydrogen production and water oxidation with ruthenium. The second part of the text covers biological properties and important medical applications of ruthenium-containing complexes as therapeutic agents or in diagnostic imaging. Aimed at stimulating research in this active field, this is an invaluable information source for researchers in academia, health research institutes, and governmental departments working in the field of organometallic chemistry, green and sustainable chemistry as well as medicine/drug discovery, while equally serving as a useful reference also for scientists in industry.

12746.87 рублей

Купить сейчас

George W. Luther, III Inorganic Chemistry for Geochemistry and Environmental Sciences. Fundamentals and Applications

Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications discusses the structure, bonding and reactivity of molecules and solids of environmental interest, bringing the reactivity of non-metals and metals to inorganic chemists, geochemists and environmental chemists from diverse fields. Understanding the principles of inorganic chemistry including chemical bonding, frontier molecular orbital theory, electron transfer processes, formation of (nano) particles, transition metal-ligand complexes, metal catalysis and more are essential to describe earth processes over time scales ranging from 1 nanosec to 1 Gigayr. Throughout the book, fundamental chemical principles are illustrated with relevant examples from geochemistry, environmental and marine chemistry, allowing students to better understand environmental and geochemical processes at the molecular level. Topics covered include: • Thermodynamics and kinetics of redox reactions • Atomic structure • Symmetry • Covalent bonding, and bonding in solids and nanoparticles • Frontier Molecular Orbital Theory • Acids and bases • Basics of transition metal chemistry including • Chemical reactivity of materials of geochemical and environmental interest Supplementary material is provided online, including PowerPoint slides, problem sets and solutions. Inorganic Chemistry for Geochemistry and Environmental Sciences is a rapid assimilation textbook for those studying and working in areas of geochemistry, inorganic chemistry and environmental chemistry, wishing to enhance their understanding of environmental processes from the molecular level to the global level.

6914.81 рублей

Купить сейчас

James Dabrowiak C. Metals in Medicine

Working from basic chemical principles, Metals in Medicine 2nd Edition describes a wide range of metal-based agents for treating and diagnosing disease. Thoroughly revised and restructured to reflect significant research activity and advances, this new edition contains extensive updates and new pedagogical features while retaining the popular feature boxes and end-of-chapter problems of the first edition. Topics include: Metallo-Drugs and their action Platinum drugs for treating cancer Anticancer agents beyond cisplatin including ruthenium, gold, titanium and gallium Responsive Metal Complexes Treating arthritis and diabetes with metal complexes Metal complexes for killing bacteria, parasites and viruses Metal ion imbalance and its links to diseases including Alzheimer’s, Wilson’s and Menkes disease Metal complexes for detecting disease Nanotechnology in medicine Now in full colour, Metals in Medicine 2nd Edition employs real-life applications and chapter-end summaries alongside feature boxes and problems. It provides a complete and methodical examination of the use of metal complexes in medicine for advanced undergraduate and postgraduate students in medicinal inorganic chemistry, bioinorganic chemistry, biochemistry, pharmacology, biophysics, biology and bioengineering. It is also an invaluable resource for academic researchers and industrial scientists in inorganic chemistry, medicinal chemistry and drug development.

6373.43 рублей

Купить сейчас

Pozdeev P. P. Homogeneous Catalysis with Metal Complexes. Kinetic Aspects and Mechanisms

Homogeneous catalysis by soluble metal complexes has gained considerable attention due to its unique applications and features such as high activity and selectivity. Catalysis of this type has demonstrated impressive achievements in synthetic organic chemistry and commercial chemical technology. Homogeneous Catalysis with Metal Complexes: Kinetic Aspects and Mechanisms presents a comprehensive summary of the results obtained over the last sixty years in the field of the kinetics and mechanisms of organic and inorganic reactions catalyzed with metal complexes. Topics covered include: Specific features of catalytic reaction kinetics in the presence of various mono- and polynuclear metal complexes and nanoclusters Multi-route mechanisms and the methods of their identification, as well as approaches to the kinetics of polyfunctional catalytic systems Principles and features of the dynamic behavior of nonlinear kinetic models The potential, achievements, and limitations of applying the kinetic approach to the identification of complex reaction mechanisms The development of a rational strategy for designing kinetic models The kinetic models and mechanisms of many homogeneous catalytic processes employed in synthetic and commercial chemistry Written for specialists in the field of kinetics and catalysis, this book is also relevant for post-graduates engaged in the study

30959.33 рублей

Купить сейчас

Findlay John W. Ligand-Binding Assays. Development, Validation, and Implementation in the Drug Development Arena

A consolidated and comprehensive reference on ligand-binding assays Ligand-binding assays (LBAs) stand as the cornerstone of support for definition of the pharmaco-kinetics and toxicokinetics of macromolecules, an area of burgeoning interest in the pharmaceutical industry. Yet, outside of the Crystal City Conference proceedings, little guidance has been available for LBA validation, particularly for assays used to support macromolecule drug development. Ligand-Binding Assays: Development, Validation, and Implementation in the Drug Development Arena answers that growing need, serving as a reference text discussing critical aspects of the development, validation, and implementation of ligand-binding assays in the drug development field. Ligand-Binding Assays covers essential topics related to ligand-binding assays, from pharmacokinetic studies, the development of LBAs, assay validation, statistical LBA aspects, and regulatory aspects, to software for LBAs and robotics and other emerging methodologies for LBAs. Highlights include: A general discussion of challenges and proven approaches in the development of ligand-binding assays More detailed examination of characteristics of these assays when applied to support of pharmacokinetic and toxicokinetic studies of compounds at different stages in the discovery or development timeline A concise, but detailed, discussion of validation of ligand-binding assays for macromolecules A practical approach to «fit-for-purpose» validation of assays for biomarkers, those molecules receiving increased attention as potentially demonstrating that the target chosen in discovery is being modulated by the candidate therapeutic, both in nonclinical and clinical studies Written by a team of world-recognized authorities in the field, Ligand-Binding Assays provides key information to a broad range of practitioners, both in the pharmaceutical and allied industries and in related contract research organizations and academic laboratories and, perhaps, even in the field of diagnostics and clinical chemistry.

10728.48 рублей

Купить сейчас

Hani Amouri Chirality in Transition Metal Chemistry. Molecules, Supramolecular Assemblies and Materials

Chirality in Transition Metal Chemistry is an essential introduction to this increasingly important field for students and researchers in inorganic chemistry. Emphasising applications and real-world examples, the book begins with an overview of chirality, with a discussion of absolute configurations and system descriptors, physical properties of enantiomers, and principles of resolution and preparation of enantiomers. The subsequent chapters deal with the the specifics of chirality as it applies to transition metals. Some reviews of Chirality in Transition Metal Chemistry «…useful to students taking an advanced undergraduate course and particularly to postgraduates and academics undertaking research in the areas of chiral inorganic supramolecular complexes and materials.» Chemistry World, August 2009 “…the book offers an extremely exciting new addition to the study of inorganic chemistry, and should be compulsory reading for students entering their final year of undergraduate studies or starting a Ph.D. in structural inorganic chemistry.” Applied Organometallic Chemistry Volume 23, Issue 5, May 2009 “…In conclusion the book gives a wonderful overview of the topic. It is helpful for anyone entering the field through systematic and detailed introduction of basic information. It was time to publish a new and topical text book covering the important aspect of coordination chemistry. It builds bridges between Inorganic, organic and supramolecular chemistry. I can recommend the book to everybody who is interested in the chemistry of chiral coordination compounds .” Angew. chem. Volume 48, Issue 18, April 2009 About the Series Chirality in Transition Metal Chemistry is the latest addition to the Wiley Inorganic Chemistry Advanced Textbook series. This series reflects the pivotal role of modern inorganic and physical chemistry in a whole range of emerging areas such as materials chemistry, green chemistry and bioinorganic chemistry, as well as providing a solid grounding in established areas such as solid state chemistry, coordination chemistry, main group chemistry and physical inorganic chemistry.

18371.19 рублей

Купить сейчас

Roderick Bates Organic Synthesis Using Transition Metals

Transition metals open up new opportunities for synthesis, because their means of bonding and their reaction mechanisms differ from those of the elements of the s and p blocks. In the last two decades the subject has mushroomed – established reactions are seeing both technical improvements and increasing numbers of applications, and new reactions are being developed. The practicality of the subject is demonstrated by the large number of publications coming from the process development laboratories of pharmaceutical companies, and its importance is underlined by the fact that three Nobel prizes have been awarded for discoveries in this field in the 21st Century already. Organic Synthesis Using Transition Metals, 2nd Edition considers the ways in which transition metals, as catalysts and reagents, can be used in organic synthesis, both for pharmaceutical compounds and for natural products. It concentrates on the bond-forming reactions that set transition metal chemistry apart from «classical» organic chemistry. Each chapter is extensively referenced and provides a convenient point of entry to the research literature. Topics covered include: introduction to transition metals in organic synthesis coupling reactions C-H activation carbonylative coupling reactions alkene and alkyne insertion reactions electrophilic alkene and alkyne complexes reactions of alkyne complexes carbene complexes h3- or p-allyl -allyl complexes diene, dienyl and arene complexes cycloaddition and cycloisomerisation reactions For this second edition the text has been extensively revised and expanded to reflect the significant improvements and advances in the field since the first edition, as well as the large number of new transition metal-catalysed processes that have come to prominence in the last 10 years – for example the extraordinary progress in coupling reactions using “designer” ligands, catalysis using gold complexes, new opportunities arising from metathesis chemistry, and C-H activation – without neglecting the well established chemistry of metals such as palladium. Organic Synthesis Using Transition Metals, 2nd Edition will find a place on the bookshelves of advanced undergraduates and postgraduates working in organic synthesis, catalysis, medicinal chemistry and drug discovery. It is also useful for practising researchers who want to refresh and enhance their knowledge of the field.

13027.44 рублей

Купить сейчас

Marcel Swart Spin States in Biochemistry and Inorganic Chemistry. Influence on Structure and Reactivity

It has long been recognized that metal spin states play a central role in the reactivity of important biomolecules, in industrial catalysis and in spin crossover compounds. As the fields of inorganic chemistry and catalysis move towards the use of cheap, non-toxic first row transition metals, it is essential to understand the important role of spin states in influencing molecular structure, bonding and reactivity. Spin States in Biochemistry and Inorganic Chemistry provides a complete picture on the importance of spin states for reactivity in biochemistry and inorganic chemistry, presenting both theoretical and experimental perspectives. The successes and pitfalls of theoretical methods such as DFT, ligand-field theory and coupled cluster theory are discussed, and these methods are applied in studies throughout the book. Important spectroscopic techniques to determine spin states in transition metal complexes and proteins are explained, and the use of NMR for the analysis of spin densities is described. Topics covered include: DFT and ab initio wavefunction approaches to spin states Experimental techniques for determining spin states Molecular discovery in spin crossover Multiple spin state scenarios in organometallic reactivity and gas phase reactions Transition-metal complexes involving redox non-innocent ligands Polynuclear iron sulfur clusters Molecular magnetism NMR analysis of spin densities This book is a valuable reference for researchers working in bioinorganic and inorganic chemistry, computational chemistry, organometallic chemistry, catalysis, spin-crossover materials, materials science, biophysics and pharmaceutical chemistry.

12292.99 рублей

Купить сейчас

Kenneth Karlin D. Progress in Inorganic Chemistry

This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 58 continues to report recent advances with a significant, up-to-date selection of contributions by internationally-recognized researchers. The chapters of this volume are devoted to the following topics: • Tris(dithiolene) Chemistry: A Golden Jubilee • How to find an HNO needle in a (bio)-chemical Haystack • Photoactive Metal Nitrosyl and Carbonyl Complexes Derived from Designed Auxiliary Ligands: An Emerging Class of Photochemotherapeutics • Metal–Metal Bond-Containing Complexes as Catalysts for C–H Functionalization Iron Catalysis in Synthetic Chemistry • Reactive Transition Metal Nitride Complexes Suitable for inorganic chemists and materials scientists in academia, government, and industries including pharmaceutical, fine chemical, biotech, and agricultural.

11618.58 рублей

Купить сейчас

Wanda Sliwa Cyclodextrins. Properties and Applications

Authored by two experts working in this important field of research, the timely book covers the latest advances in the synthesis of cyclodextrins, their properties and important industrial applications. To this end, the authors describe covalent and non-covalent assemblies, cyclodextrin inclusion complexes, cyclodextrin polymers, and modified cyclodextrins, resulting in an up-to-date overview of cyclodextrin chemistry. An invaluable reference for organic and polymer chemists in academia as well as those researchers in industry working in polymer, supramolecular and pharmaceutical chemistry, as well as food, textile and cosmetic science.

14247.21 рублей

Купить сейчас

Hongzhe Sun Biological Chemistry of Arsenic, Antimony and Bismuth

Arsenic, antimony and bismuth, three related elements of group 15, are all found in trace quantities in nature and have interesting biological properties and uses. While arsenic is most well known as a poison – and indeed the contamination of groundwater by arsenic is becoming a major health problem in Asia – it also has uses for the treatment of blood cancer and has long been used in traditional chinese medicine. Antimony and bismuth compounds are used in the clinic for the treatment of parasitic and bacterial infections. Biological Chemistry of Arsenic, Antimony and Bismuth is an essential overview of the biological chemistry of these three elements, with contributions from an international panel of experts. Topics covered include: chemistry of As, Sb and Bi biological chemistry of arsenic biological chemistry of Sb and Bi arsenic and antimony speciation in environmental and biological samples arsenic in traditional chinese medicine arsenic in aquifers biomethylation of As, Sb and Bi uptake of metalloids by cells bismuth complexes of porphyrins and their potential in medical applications Helicobacter pylori and bismuth metabolism of arsenic trioxide in blood of the acute promyelocytic leukemia patients anticancer properties of As, Sb and Bi radio-Bi in cancer therapy genotoxicity of As, Sb and Bi metallomics as a new technique for As, Sb and Bi metalloproteomics for As, Sb and Bi Biological Chemistry of Arsenic, Antimony and Bismuth conveys the essential aspects of the bioinorganic chemistry of these three elements, making this book a valuable complement to more general bioinorganic chemistry texts and more specialized topical reviews. It will find a place on the bookshelves of practitioners, researchers and students working in bioinorganic chemistry and medicinal chemistry.

15096.5 рублей

Купить сейчас

Gilles Gasser Inorganic Chemical Biology. Principles, Techniques and Applications

Understanding, identifying and influencing the biological systems are the primary objectives of chemical biology. From this perspective, metal complexes have always been of great assistance to chemical biologists, for example, in structural identification and purification of essential biomolecules, for visualizing cellular organelles or to inhibit specific enzymes. This inorganic side of chemical biology, which continues to receive considerable attention, is referred to as inorganic chemical biology. Inorganic Chemical Biology: Principles, Techniques and Applications provides a comprehensive overview of the current and emerging role of metal complexes in chemical biology. Throughout all of the chapters there is a strong emphasis on fundamental theoretical chemistry and experiments that have been carried out in living cells or organisms. Outlooks for the future applications of metal complexes in chemical biology are also discussed. Topics covered include: • Metal complexes as tools for structural biology • IMAC, AAS, XRF and MS as detection techniques for metals in chemical biology • Cell and organism imaging and probing DNA using metal and metal carbonyl complexes • Detection of metal ions, anions and small molecules using metal complexes • Photo-release of metal ions in living cells • Metal complexes as enzyme inhibitors and catalysts in living cells Written by a team of international experts, Inorganic Chemical Biology: Principles, Techniques and Applications is a must-have for bioinorganic, bioorganometallic and medicinal chemists as well as chemical biologists working in both academia and industry.

13870.39 рублей

Купить сейчас
Ни разу в жизни не было так легко купить mohammad mansoob khan chemistry of dinucleating macrocyclic ligand and their complexes без высокой переплаты — по лучшим ценам. Столь великолепный и добротный лот не может оцениваться чрезмерно дешево, однако цена mohammad mansoob khan chemistry of dinucleating macrocyclic ligand and their complexes на этой странице предлагается с 6373.43 рублей. Наша витрина насчитывает 1 популярных онлайн продавцов, среди которых: litres.ru

Transition metals open up new opportunities for synthesis, because their means of bonding and their reaction mechanisms differ from those of the elements of the s and p blocks. In the last two decades the subject has mushroomed – established reactions are seeing both technical improvements and increasing numbers of applications, and new reactions are being developed. The practicality of the subject is demonstrated by the large number of publications coming from the process development laboratories of pharmaceutical companies, and its importance is underlined by the fact that three Nobel prizes have been awarded for discoveries in this field in the 21st Century already. Organic Synthesis Using Transition Metals, 2nd Edition considers the ways in which transition metals, as catalysts and reagents, can be used in organic synthesis, both for pharmaceutical compounds and for natural products. It concentrates on the bond-forming reactions that set transition metal chemistry apart from «classical» organic chemistry. Each chapter is extensively referenced and provides a convenient point of entry to the research literature. Topics covered include: introduction to transition metals in organic synthesis coupling reactions C-H activation carbonylative coupling reactions alkene and alkyne insertion reactions electrophilic alkene and alkyne complexes reactions of alkyne complexes carbene complexes h3- or p-allyl -allyl complexes diene, dienyl and arene complexes cycloaddition and cycloisomerisation reactions For this second edition the text has been extensively revised and expanded to reflect the significant improvements and advances in the field since the first edition, as well as the large number of new transition metal-catalysed processes that have come to prominence in the last 10 years – for example the extraordinary progress in coupling reactions using “designer” ligands, catalysis using gold complexes, new opportunities arising from metathesis chemistry, and C-H activation – without neglecting the well established chemistry of metals such as palladium. Organic Synthesis Using Transition Metals, 2nd Edition will find a place on the bookshelves of advanced undergraduates and postgraduates working in organic synthesis, catalysis, medicinal chemistry and drug discovery. It is also useful for practising researchers who want to refresh and enhance their knowledge of the field.

© 2019 Mededu51 . Охраняется законом РФ о СМИ | Разработано студией Flexi