hassanali mosalman yazdi uncertainty modelling in structural engineering

Недавно искали

Диапазон цен



Terje Aven Uncertainty in Risk Assessment. The Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods

Explores methods for the representation and treatment of uncertainty in risk assessment In providing guidance for practical decision-making situations concerning high-consequence technologies (e.g., nuclear, oil and gas, transport, etc.), the theories and methods studied in Uncertainty in Risk Assessment have wide-ranging applications from engineering and medicine to environmental impacts and natural disasters, security, and financial risk management. The main focus, however, is on engineering applications. While requiring some fundamental background in risk assessment, as well as a basic knowledge of probability theory and statistics, Uncertainty in Risk Assessment can be read profitably by a broad audience of professionals in the field, including researchers and graduate students on courses within risk analysis, statistics, engineering, and the physical sciences. Uncertainty in Risk Assessment: Illustrates the need for seeing beyond probability to represent uncertainties in risk assessment contexts. Provides simple explanations (supported by straightforward numerical examples) of the meaning of different types of probabilities, including interval probabilities, and the fundamentals of possibility theory and evidence theory. Offers guidance on when to use probability and when to use an alternative representation of uncertainty. Presents and discusses methods for the representation and characterization of uncertainty in risk assessment. Uses examples to clearly illustrate ideas and concepts.

7569.98 рублей

Купить сейчас

Feng Fu Advanced Modelling Techniques in Structural Design

The successful design and construction of iconic new buildings relies on a range of advanced technologies, in particular on advanced modelling techniques. In response to the increasingly complex buildings demanded by clients and architects, structural engineers have developed a range of sophisticated modelling software to carry out the necessary structural analysis and design work. Advanced Modelling Techniques in Structural Design introduces numerical analysis methods to both students and design practitioners. It illustrates the modelling techniques used to solve structural design problems, covering most of the issues that an engineer might face, including lateral stability design of tall buildings; earthquake; progressive collapse; fire, blast and vibration analysis; non-linear geometric analysis and buckling analysis . Resolution of these design problems are demonstrated using a range of prestigious projects around the world, including the Buji Khalifa; Willis Towers; Taipei 101; the Gherkin; Millennium Bridge; Millau viaduct and the Forth Bridge, illustrating the practical steps required to begin a modelling exercise and showing how to select appropriate software tools to address specific design problems.

9373.54 рублей

Купить сейчас

Buchanan Andrew H. Structural Design for Fire Safety

Structural Design for Fire Safety, 2nd edition Andrew H. Buchanan, University of Canterbury, New Zealand Anthony K. Abu, University of Canterbury, New Zealand A practical and informative guide to structural fire engineering This book presents a comprehensive overview of structural fire engineering. An update on the first edition, the book describes new developments in the past ten years, including advanced calculation methods and computer programs. Further additions include: calculation methods for membrane action in floor slabs exposed to fires; a chapter on composite steel-concrete construction; and case studies of structural collapses. The book begins with an introduction to fire safety in buildings, from fire growth and development to the devastating effects of severe fires on large building structures. Methods of calculating fire severity and fire resistance are then described in detail, together with both simple and advanced methods for assessing and designing for structural fire safety in buildings constructed from structural steel, reinforced concrete, or structural timber. Structural Design for Fire Safety, 2nd edition bridges the information gap between fire safety engineers, structural engineers and building officials, and it will be useful for many others including architects, code writers, building designers, and firefighters. Key features: • Updated references to current research, as well as new end-of-chapter questions and worked examples. •Authors experienced in teaching, researching, and applying structural fire engineering in real buildings. • A focus on basic principles rather than specific building code requirements, for an international audience. An essential guide for structural engineers who wish to improve their understanding of buildings exposed to severe fires and an ideal textbook for introductory or advanced courses in structural fire engineering.

4712.74 рублей

Купить сейчас

Philip Dawid Simplicity, Complexity and Modelling

Several points of disagreement exist between different modelling traditions as to whether complex models are always better than simpler models, as to how to combine results from different models and how to propagate model uncertainty into forecasts. This book represents the result of collaboration between scientists from many disciplines to show how these conflicts can be resolved. Key Features: Introduces important concepts in modelling, outlining different traditions in the use of simple and complex modelling in statistics. Provides numerous case studies on complex modelling, such as climate change, flood risk and new drug development. Concentrates on varying models, including flood risk analysis models, the petrol industry forecasts and summarizes the evolution of water distribution systems. Written by experienced statisticians and engineers in order to facilitate communication between modellers in different disciplines. Provides a glossary giving terms commonly used in different modelling traditions. This book provides a much-needed reference guide to approaching statistical modelling. Scientists involved with modelling complex systems in areas such as climate change, flood prediction and prevention, financial market modelling and systems engineering will benefit from this book. It will also be a useful source of modelling case histories.

9523.66 рублей

Купить сейчас

Karl-Gunnar Olsson Structural Mechanics: Modelling and Analysis of Frames and Trusses

Textbook covers the fundamental theory of structural mechanics and the modelling and analysis of frame and truss structures Deals with modelling and analysis of trusses and frames using a systematic matrix formulated displacement method with the language and flexibility of the finite element method Element matrices are established from analytical solutions to the differential equations Provides a strong toolbox with elements and algorithms for computational modelling and numerical exploration of truss and frame structures Discusses the concept of stiffness as a qualitative tool to explain structural behaviour Includes numerous exercises, for some of which the computer software CALFEM is used. In order to support the learning process CALFEM gives the user full overview of the matrices and algorithms used in a finite element analysis

4507.84 рублей

Купить сейчас

Suresh Bhalla Piezoelectric Materials. Applications in SHM, Energy Harvesting and Biomechanics

Piezoelectric materials are attracting significant research efforts and resources worldwide. The major thrust areas include structural health monitoring, bio-mechanics, bio-medicine and energy harvesting. Engineering and technological applications of this smart material warrants multi-dimensional theoretical and experimental knowledge and expertise in fields of mechanics, instrumentation, digital electronics and information technology, over and above the specific domain knowledge. This book presents, from theory to practice, the application of piezoelectric smart materials in engineering domains such as structural health monitoring (SHM), bio-mechanics, bio-medical engineering and energy harvesting.

8144.84 рублей

Купить сейчас

Chen YangQuan System Simulation Techniques with MATLAB and Simulink

System Simulation Techniques with MATLAB and Simulink comprehensively explains how to use MATLAB and Simulink to perform dynamic systems simulation tasks for engineering and non-engineering applications. This book begins with covering the fundamentals of MATLAB programming and applications, and the solutions to different mathematical problems in simulation. The fundamentals of Simulink modelling and simulation are then presented, followed by coverage of intermediate level modelling skills and more advanced techniques in Simulink modelling and applications. Finally the modelling and simulation of engineering and non-engineering systems are presented. The areas covered include electrical, electronic systems, mechanical systems, pharmacokinetic systems, video and image processing systems and discrete event systems. Hardware-in-the-loop simulation and real-time application are also discussed. Key features: Progressive building of simulation skills using Simulink, from basics through to advanced levels, with illustrations and examples Wide coverage of simulation topics of applications from engineering to non-engineering systems Dedicated chapter on hardware-in-the-loop simulation and real time control End of chapter exercises A companion website hosting a solution manual and powerpoint slides System Simulation Techniques with MATLAB and Simulink is a suitable textbook for senior undergraduate/postgraduate courses covering modelling and simulation, and is also an ideal reference for researchers and practitioners in industry.

9957.26 рублей

Купить сейчас

Professor Caers Jef Modeling Uncertainty in the Earth Sciences

Modeling Uncertainty in the Earth Sciences highlights the various issues, techniques and practical modeling tools available for modeling the uncertainty of complex Earth systems and the impact that it has on practical situations. The aim of the book is to provide an introductory overview which covers a broad range of tried-and-tested tools. Descriptions of concepts, philosophies, challenges, methodologies and workflows give the reader an understanding of the best way to make decisions under uncertainty for Earth Science problems. The book covers key issues such as: Spatial and time aspect; large complexity and dimensionality; computation power; costs of 'engineering' the Earth; uncertainty in the modeling and decision process. Focusing on reliable and practical methods this book provides an invaluable primer for the complex area of decision making with uncertainty in the Earth Sciences.

13687.34 рублей

Купить сейчас

Camilo Olaya Social Systems Engineering. The Design of Complexity

Uniquely reflects an engineering view to social systems in a wide variety of contexts of application Social Systems Engineering: The Design of Complexity brings together a wide variety of application approaches to social systems from an engineering viewpoint. The book defines a social system as any complex system formed by human beings. Focus is given to the importance of systems intervention design for specific and singular settings, the possibilities of engineering thinking and methods, the use of computational models in particular contexts, and the development of portfolios of solutions. Furthermore, this book considers both technical, human and social perspectives, which are crucial to solving complex problems. Social Systems Engineering: The Design of Complexity provides modelling examples to explore the design aspect of social systems. Various applications are explored in a variety of areas, such as urban systems, health care systems, socio-economic systems, and environmental systems. It covers important topics such as organizational design, modelling and intervention in socio-economic systems, participatory and/or community-based modelling, application of systems engineering tools to social problems, applications of computational behavioral modeling, computational modelling and management of complexity, and more. Highlights an engineering view to social systems (as opposed to a “scientific” view) that stresses the importance of systems intervention design for specific and singular settings Divulges works where the design, re-design, and transformation of social systems constitute the main aim, and where joint considerations of both technical and social perspectives are deemed important in solving social problems Features an array of applied cases that illustrate the application of social systems engineering in different domains Social Systems Engineering: The Design of Complexity is an excellent text for academics and graduate students in engineering and social science—specifically, economists, political scientists, anthropologists, and management scientists with an interest in finding systematic ways to intervene and improve social systems.

7498.83 рублей

Купить сейчас

Wieslaw Staszewski Advanced Structural Damage Detection. From Theory to Engineering Applications

Structural Health Monitoring (SHM) is the interdisciplinary engineering field devoted to the monitoring and assessment of structural health and integrity. SHM technology integrates non-destructive evaluation techniques using remote sensing and smart materials to create smart self-monitoring structures characterized by increased reliability and long life. Its applications are primarily systems with critical demands concerning performance where classical onsite assessment is both difficult and expensive. Advanced Structural Damage Detection: From Theory to Engineering Applications is written by academic experts in the field and provides students, engineers and other technical specialists with a comprehensive review of recent developments in various monitoring techniques and their applications to SHM. Contributing to an area which is the subject of intensive research and development, this book offers both theoretical principles and feasibility studies for a number of SHM techniques. Key features: Takes a multidisciplinary approach and provides a comprehensive review of main SHM techniques Presents real case studies and practical application of techniques for damage detection in different types of structures Presents a number of new/novel data processing algorithms Demonstrates real operating prototypes Advanced Structural Damage Detection: From Theory to Engineering Applications is a comprehensive reference for researchers and engineers and is a useful source of information for graduate students in mechanical and civil engineering

11994.57 рублей

Купить сейчас

Kevin Murphy D. Modeling and Estimation of Structural Damage

Modelling and Estimation of Damage in Structures is a comprehensiveguide to solving the type of modelling and estimation problems associated with the physics of structural damage. Provides a model-based approach to damage identification Presents an in-depth treatment of probability theory and random processes Covers both theory and algorithms for implementing maximum likelihood and Bayesian estimation approaches Includes experimental examples of all detection and identification approaches Provides a clear means by which acquired data can be used to make decisions regarding maintenance and usage of a structure

9015.67 рублей

Купить сейчас

James Ambrose Simplified Engineering for Architects and Builders

The bestselling structural design reference, fully updated and revised Simplified Engineering for Architects and Builders is the go-to reference on structural design, giving architects and designers a concise introduction to the structures commonly used for typical buildings. The clear, accessible presentation is designed to give you the essential engineering information you need without getting bogged down in excess math, making this book an ideal reference for busy design professionals. This new 12th edition has been completely revised to reflect the latest standards and practices. The instructor site includes a complete suite of teaching resources, including an instructor's manual and a PowerPoint presentation. Structural design is an essential component of the architect's repertoire, and engineering principles are at the foundation of every sound structure. You need to know the physics, but you don't necessarily need to know all of the math. This book gives you exactly what you need without losing you in a tangle of equations, so you can quickly grasp and apply the material. Understand fundamental concepts like forces, loading, and reactions Learn how to design for wood, steel, or concrete construction Study structural design standards and develop sound structural systems Determine the best possible solutions to difficult design challenges The industry-leading reference for over 80 years, Simplified Engineering for Architects and Builders is the definitive guide to practical structural design.

8623.66 рублей

Купить сейчас

Rao G. V. Elements of Structural Dynamics. A New Perspective

Structural dynamics is a subset of structural analysis which covers the behavior of structures subjected to dynamic loading. The subject has seen rapid growth and also change in how the basic concepts can be interpreted. For instance, the classical notions of discretizing the operator of a dynamic structural model have given way to a set-theoretic, function-space based framework, which is more conducive to implementation with a computer. This modern perspective, as adopted in this book, is also helpful in putting together the various tools and ideas in a more integrated style. Elements of Structural Dynamics: A New Perspective is devoted to covering the basic concepts in linear structural dynamics, whilst emphasizing their mathematical moorings and the associated computational aspects that make their implementation in software possible. Key features: Employs a novel ‘top down’ approach to structural dynamics. Contains an insightful treatment of the computational aspects, including the finite element method, that translate into numerical solutions of the dynamic equations of motion. Consistently touches upon the modern mathematical basis for the theories and approximations involved. Elements of Structural Dynamics: A New Perspective is a holistic treatise on structural dynamics and is an ideal textbook for senior undergraduate and graduate students in Mechanical, Aerospace and Civil engineering departments. This book also forms a useful reference for researchers and engineers in industry.

9957.26 рублей

Купить сейчас

Radi Bouchaib Uncertainty and Optimization in Structural Mechanics

Optimization is generally a reduction operation of a definite quantity. This process naturally takes place in our environment and through our activities. For example, many natural systems evolve, in order to minimize their potential energy. Modeling these phenomena then largely relies on our capacity to artificially reproduce these processes. In parallel, optimization problems have quickly emerged from human activities, notably from economic concerns. This book includes the most recent ideas coming from research and industry in the field of optimization, reliability and the recognition of accompanying uncertainties. It is made up of eight chapters which look at the reviewing of uncertainty tools, system reliability, optimal design of structures and their optimization (of sizing, form, topology and multi-objectives) – along with their robustness and issues on optimal safety factors. Optimization reliability coupling will also be tackled in order to take into account the uncertainties in the modeling and resolution of the problems encountered. The book is aimed at students, lecturers, engineers, PhD students and researchers. Contents 1. Uncertainty. 2. Reliability in Mechanical Systems. 3. Optimal Structural Design. 4. Multi-object Optimization with Uncertainty. 5. Robust Optimization. 6. Reliability Optimization. 7. Optimal Security Factors Approach. 8. Reliability-based Topology Optimization. About the Authors Abdelkhalak El Hami is Professor at the Institut National des Sciences Appliquées, Rouen, France. He is the author of many articles and books on optimization and uncertainty. Bouchaib Radi is Professor in the Faculty of Sciences and Technology at the University of Hassan Premier, Settat, Morocco. His research interests are in such areas as structural optimization, parallel computation, contact problem and metal forming. He is the author of many scientific articles and books.

6686.14 рублей

Купить сейчас

Ka-Veng Yuen Bayesian Methods for Structural Dynamics and Civil Engineering

Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen

12442.68 рублей

Купить сейчас

Ahmed Elmarakbi Advanced Composite Materials for Automotive Applications. Structural Integrity and Crashworthiness

The automotive industry faces many challenges, including increased global competition, the need for higher-performance vehicles, a reduction in costs and tighter environmental and safety requirements. The materials used in automotive engineering play key roles in overcoming these issues: ultimately lighter materials mean lighter vehicles and lower emissions. Composites are being used increasingly in the automotive industry due to their strength, quality and light weight. Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness provides a comprehensive explanation of how advanced composite materials, including FRPs, reinforced thermoplastics, carbon-based composites and many others, are designed, processed and utilized in vehicles. It includes technical explanations of composite materials in vehicle design and analysis and covers all phases of composite design, modelling, testing and failure analysis. It also sheds light on the performance of existing materials including carbon composites and future developments in automotive material technology which work towards reducing the weight of the vehicle structure. Key features: Chapters written by world-renowned authors and experts in their own fields Includes detailed case studies and examples covering all aspects of composite materials and their application in the automotive industries Unique topic integration between the impact, crash, failure, damage, analysis and modelling of composites Presents the state of the art in composite materials and their application in the automotive industry Integrates theory and practice in the fields of composite materials and automotive engineering Considers energy efficiency and environmental implications Advanced Composite Materials for Automotive Applications: Structural Integrity and Crashworthiness is a comprehensive reference for those working with composite materials in both academia and industry, and is also a useful source of information for those considering using composites in automotive applications in the future.

10873.3 рублей

Купить сейчас

Maurice Lemaire Mechanics and Uncertainty

Science is a quest for certainty, but lack of certainty is the driving force behind all of its endeavors. This book, specifically, examines the uncertainty of technological and industrial science. Uncertainty and Mechanics studies the concepts of mechanical design in an uncertain setting and explains engineering techniques for inventing cost-effective products. Though it references practical applications, this is a book about ideas and potential advances in mechanical science.

8245.85 рублей

Купить сейчас

Etienne Rocquigny de Modelling Under Risk and Uncertainty. An Introduction to Statistical, Phenomenological and Computational Methods

Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.

9879.47 рублей

Купить сейчас

Modelling has permeated virtually all areas of industrial, environmental, economic, bio-medical or civil engineering: yet the use of models for decision-making raises a number of issues to which this book is dedicated: How uncertain is my model ? Is it truly valuable to support decision-making ? What kind of decision can be truly supported and how can I handle residual uncertainty ? How much refined should the mathematical description be, given the true data limitations ? Could the uncertainty be reduced through more data, increased modeling investment or computational budget ? Should it be reduced now or later ? How robust is the analysis or the computational methods involved ? Should / could those methods be more robust ? Does it make sense to handle uncertainty, risk, lack of knowledge, variability or errors altogether ? How reasonable is the choice of probabilistic modeling for rare events ? How rare are the events to be considered ? How far does it make sense to handle extreme events and elaborate confidence figures ? Can I take advantage of expert / phenomenological knowledge to tighten the probabilistic figures ? Are there connex domains that could provide models or inspiration for my problem ? Written by a leader at the crossroads of industry, academia and engineering, and based on decades of multi-disciplinary field experience, Modelling Under Risk and Uncertainty gives a self-consistent introduction to the methods involved by any type of modeling development acknowledging the inevitable uncertainty and associated risks. It goes beyond the “black-box” view that some analysts, modelers, risk experts or statisticians develop on the underlying phenomenology of the environmental or industrial processes, without valuing enough their physical properties and inner modelling potential nor challenging the practical plausibility of mathematical hypotheses; conversely it is also to attract environmental or engineering modellers to better handle model confidence issues through finer statistical and risk analysis material taking advantage of advanced scientific computing, to face new regulations departing from deterministic design or support robust decision-making. Modelling Under Risk and Uncertainty: Addresses a concern of growing interest for large industries, environmentalists or analysts: robust modeling for decision-making in complex systems. Gives new insights into the peculiar mathematical and computational challenges generated by recent industrial safety or environmental control analysis for rare events. Implements decision theory choices differentiating or aggregating the dimensions of risk/aleatory and epistemic uncertainty through a consistent multi-disciplinary set of statistical estimation, physical modelling, robust computation and risk analysis. Provides an original review of the advanced inverse probabilistic approaches for model identification, calibration or data assimilation, key to digest fast-growing multi-physical data acquisition. Illustrated with one favourite pedagogical example crossing natural risk, engineering and economics, developed throughout the book to facilitate the reading and understanding. Supports Master/PhD-level course as well as advanced tutorials for professional training Analysts and researchers in numerical modeling, applied statistics, scientific computing, reliability, advanced engineering, natural risk or environmental science will benefit from this book.

Пытаешься купить hassanali mosalman yazdi uncertainty modelling in structural engineering по низкой цене? На этом портале доступно выбрать hassanali mosalman yazdi uncertainty modelling in structural engineering, стоимость которого от 4507.84 вплоть до 13687.34 руб. Перечень предложений представлен: litres.ru.

© 2019 Mededu51 . Охраняется законом РФ о СМИ | Разработано студией Flexi